France

Forschungsprojekt KI-Anwendungen sicherer machen

Redakteur: Kristin Breunig

Künstliche Intelligenz (KI) kann den Arbeitsalltag erleichtern – auch in der Medizin. Um diese Technologie weiter voran zu treiben, startet die Hochschule Landshut ein Forschungsprojekt mit dem Münchner KI-Unternehmen Deepc, um die Sicherheitsstandards bei der Anwendung von künstlicher Intelligenz in der medizinischen Bildgebung zu automatisieren.

Firmen zum Thema

Die Standardisierung von KI-Daten in der medizinischen Bilddatenverarbeitung ist das Ziel des gemeinsamen Forschungsprojekts Neurotest der Hochschule Landshut und dem Start-up Deepc.
Die Standardisierung von KI-Daten in der medizinischen Bilddatenverarbeitung ist das Ziel des gemeinsamen Forschungsprojekts Neurotest der Hochschule Landshut und dem Start-up Deepc.
(Bild: Deepc)

Künstliche Intelligenz findet bereits in vielen Bereichen der Medizin Anwendung. Bei Röntgen- oder MRT-Aufnahmen erkennt sie beispielsweise Krankheitsmuster. KI-basierte Lösungen benötigen jedoch Tausende konkreter Beispiele, um lernen zu können und müssen gleichzeitig validiert sein, um als Medizinprodukt von den Behörden zugelassen zu werden. Datenbestände für die Umsetzung von innovativen KI-Produkten sind aber häufig nicht hinreichend groß und auch nicht repräsentativ für die Allgemeinheit. Noch dazu sind medizinische Bilddaten hochsensible Patientendaten, die den strengen Regularien der Datenschutz-Grundverordnung (DSGVO) unterliegen und nicht uneingeschränkt verwendet werden können.

Bildergalerie

Hier setzt das Projekt „Neurotest“ der Hochschule Landshut unter Leitung von Prof. Dr. Stefanie Remmele an. In Zusammenarbeit mit dem Münchner Medizintechnik-Unternehmen Deepc erforscht die Professorin des Forschungsschwerpunkts Medizintechnik, wie sich künstliche Patientendaten zur Verwendung in KI-Modellen bei der medizinischen Bildgebung entwickeln lassen. Gleichzeitig arbeiten die Projektpartner an einer Online-Plattform, um Herstellern von medizinischen Geräten eine Möglichkeit zu bieten, ihre KI-basierten Medizinprodukte testen zu können, bevor sie eine Zulassung beantragen.

Institutionen fordern standardisierte Daten

Seit langem fordern nationale, europäische und internationale medizinische Institutionen eine standardisierte Validierungsmöglichkeit für KI-Anwendungen im Bereich der Radiologie und medizinischen Bildgebung.

Das Projektteam an der Hochschule Landshut will in den kommenden zwei Jahren herausfinden, unter welchen Voraussetzungen KI-Modelle in der Bildgebung ein konstantes und aussagekräftiges Ergebnis liefern können, um Ärzte entsprechend bei der Diagnose zu unterstützen. Anders als bei herkömmlichen Verfahren hängt die Genauigkeit der KI-Lösung dabei aber nicht nur von der Logik der Datenverarbeitung, sondern auch von den Daten ab, auf denen die Technologie trainiert wurde. „Dies ist besonders bei der Verarbeitung von MRT-Daten eine Herausforderung, da hier Kontrast und Bildqualität stark schwanken können, es keine unendliche Anzahl von Bildern gibt und die verfügbaren Trainingsbilder nie die gesamte Bandbreite an möglichen Schwankungen abdecken“, erklärt Remmele.

Künstliche Datensätze simulieren Variationen

Die Hochschule Landshut erforscht dabei die beeinflussenden Parameter bei Aufnahmen des menschlichen Gehirns anhand von existierenden MRT-Bildaufnahmen und künstlichen Testbildern. Alter, Geschlecht, Vorerkrankungen oder genetische und ethische Informationen des Patienten spielen hierbei eine große Rolle, genauso wie Schwankungen in den Aufnahmeparametern und der MR Hardware.

„Mithilfe dieser gewonnenen und ausgewerteten Daten und dem Modellwissen über technische Einflussgrößen wollen wir künstliche Datensätze erstellen, aus denen dann hardware-, befund- oder patientenabhängige Variationen simuliert werden können“, erläutert Remmele die Vorgehensweise. „Damit können wir KI-Modelle dann gegen alle diese Variationen testen bzw. detektieren, gegenüber welchen Veränderungen in den Daten ein Modell nicht ausreichend robust reagiert“, erklärt Remmele weiter. Die große Herausforderung ist dabei, die generierten Daten so zu standardisieren, dass KI-Modelle, nachhaltig beurteilt werden können und keine Fehlinformationen liefern.

Software soll die Zulassung von KI-Lösungen erleichtern

Parallel entwickeln die KI- und Softwarespezialisten von Deepc eine Software, mit der Hersteller, von zum Beispiel PAC-Systemen, die Möglichkeit haben ihre KI-basierten Produkte online zu validieren und dabei die vorgegebenen Sicherheitsstandards erreichen. „Mithilfe der Entwicklung von Methoden zur Erstellung von synthetischen Referenzdaten in Kombination mit realen Patientendaten, die gleichzeitig über eine standardisierte Softwareplattform konstant überprüft, erweitert und abgeglichen werden, erwarten wir uns einen deutlichen Fortschritt in der Standardisierung, Anwendung und vor allem im Zulassungsverfahren von KI-Lösungen im Bereich der bildgebenden Medizintechnik.“, erläutert Dr. Franz Pfister, CEO von Deepc die Herangehensweise.

Ergänzendes zum Thema
Das Projekt

Das Projekt „Neurotest“ läuft bis Dezember 2022. Projektleiterin an der Hochschule Landshut ist Prof. Dr. Stefanie Remmele, Leiterin des Forschungsschwerpunkts Medizintechnik. Aktiver Kooperationspartner des Projekts ist das Münchner Medizintechnik-Unternehmen Deepc unter Leitung von CEO Dr. Franz Pfister. Als assoziierte Partner stehen die Technische Universität Berlin und die Physikalisch-Technische Bundesanstalt Berlin (PTB) zur Seite. Die Gesamtprojektsumme beträgt rund 630.000 Euro. Davon fördert das Bundesministerium für Wirtschaft und Energie das Projekt im Rahmen des Programms „Zentrales Innovationsprogramm Mittelstand (ZIM)“ mit rund 400.000 Euro. Deepc steuert 225.000 Euro durch Eigenmittel bei.

Weitere Artikel zur Zukunft der Medizintechnik finden Sie in unserem Themenkanal Forschung.

(ID:47463368)