TH Köln

Digitales Produktionsverfahren für Beatmungsmasken

| Redakteur: Kathrin Schäfer

Im Rapid-Mask-Verfahren werden die biometrischen Daten des Gesichts mit einem 3D-Scanner vermessen.
Im Rapid-Mask-Verfahren werden die biometrischen Daten des Gesichts mit einem 3D-Scanner vermessen. (Bild: Thilo Schmuelgen)

Auf Intensivstationen und bei neuromuskulären Erkrankungen ist die Passgenauigkeit einer Beatmungsmaske besonders wichtig. Deshalb wird jede Maske individuell angefertigt – für den Patienten unangenehm, da von seinem Gesicht ein Silikonabdruck angefertigt werden muss. Das geht digital besser.

Um das bisher durchgehend manuelle Produktionsverfahren effizienter zu gestalten, hat ein Forschungsteam am Institut für Produktentwicklung und Konstruktionstechnik der TH Köln mit dem Projekt Rapid Mask ein neues, digitales Verfahren entwickelt. Die Vorteile: Schnellere Produktion, größere Präzision bei der individuellen Anpassung der Masken sowie erheblich geringere Belastung für Mitarbeiter und Patienten.

Biometrische Daten werden gescannt und 3D-gedruckt

Anders als bei einem Notfalleinsatz, bei dem Patientinnen und Patienten für kurze Zeit eine Standardmaske erhalten, sind in anderen medizinischen Bereichen individuell angepasste Beatmungsmasken notwendig. Auf Intensivstationen, bei neuromuskulären Erkrankungen oder einer Schlafapnoe beispielsweise, werden die Masken über einen längeren Zeitraum getragen. Sind sie nicht passgenau zur Gesichtsform, treten Leckagen auf und eine ausreichende Beatmung kann nicht sichergestellt werden. Auch Hautirritationen und Druckstellen können unangenehme Begleiterscheinungen sein.

Unter der Leitung von Prof. Dr. Alexander Boryczko entwickelten Marc Göttsche, Samuel Rothen und Isis Merit Cisneros, Studierende des Masters Maschinenbau, ein digitales Verfahren. Dabei werden die biometrischen Daten des Gesichts eines Patienten mit einem 3D-Scanner vermessen. Aufbauend auf den daraus entstehenden Polygonnetzen erfolgt die weitere Verarbeitung aller Modelle der Gussform am Rechner in einer selbst entwickelten, digitalen Arbeitsumgebung. Das Modell der Gussform wird abschließend mit einem 3D-Drucker gedruckt, so dass im neuen Prozess lediglich die Befüllung der Gussform mit dem medizintechnisch zugelassenen Silikon und eine finale Feinbearbeitung der Beatmungsmaske manuell ausgeführt werden muss. Kooperationspartner des ZIM-Projekts ist die Mülheimer Firma Airtec Beatmungshilfen GmbH & Co. KG.

Manuelle Produktion zeitintensiv und gesundheitlich belastend

Bisher werden individuelle Beatmungsmasken manuell hergestellt. Auf das Gesicht der Patienten wird ein spezielles Abformsilikon aufgetragen. Während die Masse aushärtete, muss der Patienten durch zwei in den Nasenlöchern steckenden Röhrchen atmen. Die Silikonmasse wird anschließend als Negativabdruck mit Gips ausgegossen. Dieser Abdruck wird dann von Hand modelliert. Scharfe Kanten werden nachgebessert und in bestimmten Bereichen Material auf- beziehungsweise abgetragen, um die Dichtigkeit der Maske und den Tragekomfort sicherzustellen. So muss zum Beispiel am Kinn Material entfernt werden, weil der menschliche Kiefer im Schlaf bei Rückenlage zwei bis drei Zentimeter zurückfällt. Es folgen weitere Bearbeitungsschritte wie das Modellieren eines Hohlraummodells, einer Hartschale und eines Gegenstücks. Alle Komponenten werden auf die individuellen Gesichtsparameter angepasst.

Zusammengesetzt entsteht eine Gussform für die aus Silikon anzufertigende Maske. Der Arbeitsaufwand des Technikers beträgt dabei mehrere Stunden. Weist die Form beim Probetragen noch Passfehler auf, muss sie entsorgt und eine neue angefertigt werden. Durch die Arbeit mit den Gipsabdrücken sind die Mitarbeiterinnen und Mitarbeitern permanent dem Materialstaub ausgesetzt.

Software ermöglicht intuitives Arbeiten bei hoher Genauigkeit

Über das Rapid-Mask-Verfahren entstehen die Masken nun softwaregesteuert. Dazu hat das Kölner Team eine eigene Arbeitsumgebung entwickelt, die intuitives Arbeiten bei hoher Genauigkeit ermöglicht: Für die Konfiguration einer Maske benötigt der Techniker nur noch rund 30 Minuten. Die Software basiert auf dem Programm Rhinoceros 3D und der Applikation Grasshopper. Mit ihr ist der gängige CAD-Umrechnungsweg über klassische Volumenmodelle nicht mehr notwendig. „In der entwickelten Umgebung liegt der Schwerpunkt in der Modellierung komplexer Geometrien mit Polygonnetzen und der parametrischen Variation von Netzmodellen. Als Input-Daten nutzen 3D-Drucker eben Polygonnetze und keine Volumenmodelle“, so Professor Boryczko.

Derzeit ist es noch nicht möglich, den kompletten Arbeitsprozess zu automatisieren, das heißt über die Software direkt die fertige Silikonmaske statt einer Gussform zu drucken. Das scheitert noch am aktuellen Stand der Druckertechnologie, da für Medizinprodukte nur biokompatible Silikone zugelassen sind und diese im 3D-Druck noch nicht zuverlässig verarbeitet werden können.

Kommentare werden geladen....

Diesen Artikel kommentieren

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

DER COMMUNITY-NEWSLETTER Newsletter abonnieren.
* Ich bin mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung einverstanden.
Spamschutz:
Bitte geben Sie das Ergebnis der Rechenaufgabe (Addition) ein.
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44247126 / Forschung)