Fraunhofer IPMS

Femto-Sekundenlaser schneidet Schädelknochen

| Redakteur: Kathrin Schäfer

Die Mikrospiegel des IPMS sind 6 mal 8 mm groß und bieten mehr Fläche als herkömmliche Modelle. Damit lassen sich auch Laserstrahlen mit großem Durchmesser führen.
Die Mikrospiegel des IPMS sind 6 mal 8 mm groß und bieten mehr Fläche als herkömmliche Modelle. Damit lassen sich auch Laserstrahlen mit großem Durchmesser führen. (Bild: Fraunhofer IPMS)

Schwillt nach einem Schlaganfall das Gehirn an, hilft oft nur eine OP, in der die Ärzte die Schädeldecke des Patienten öffnen. Bisher greifen sie dazu zum Bohrer. Künftig soll ein Laserstrahl den Knochen schneiden und das Risiko senken.

Ein Schlaganfall kommt plötzlich und reißt viele Betroffene unvorhergesehen aus ihrem gewohnten Leben. Ist der Infarkt sehr groß, kann das Hirn anschwellen: Der Druck in der Schädelhöhle steigt, das Gehirn wird weniger durchblutet und weiter geschädigt. Um es vor Quetschungen zu schützen, öffnen Ärzte oftmals die Schädeldecke des Patienten – sie sprechen von einer Entlastungs-Kraniotomie.

Hochenergetischer Femto-Sekundenlaser statt Bohrer

Bisher schneiden die Chirurgen den Schädelknochen mechanisch, also mit einem Bohrer. Das birgt jedoch ein recht hohes Risiko für den Patienten: Mit dem Bohrer kann der Chirurg auch die Hirnhaut verletzen, was zu einer Hirnhautentzündung und schlimmstenfalls zum Tod führen kann.

Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS in Dresden wollen dieses Risiko nun gemeinsam mit ihren Kollegen der Fraunhofer-Institute für Lasertechnik ILT und für Integrierte Schaltungen IIS senken, indem sie den Bohrer durch einen hochenergetischen Femto-Sekundenlaser ersetzen. „Unsere Kollegen am ILT haben eine Vorrichtung entwickelt, mit dem der Chirurg den Laserstrahl führen und den Schädelknochen schneiden kann“, sagt Dr. Thilo Sandner, Gruppenleiter am IPMS.

Mikrospiegel führen Laserstrahlen mit großem Durchmesser

Der Laserstrahl wird dabei über einen Spiegel-Gelenkarm in das Handstück eingekoppelt. Dessen Herzstück sind zwei neuartige Mikrospiegel, die die Forscher am IPMS entwickelt haben: Der erste schneidet die Schädeldecke, er lenkt den Laserstrahl dynamisch über den Schädelknochen. Der zweite korrigiert Fehlpositionierungen. Das Besondere: Die Bauelemente sind miniaturisiert, vertragen aber dennoch Laserleistungen von bis zu 20 Watt – also etwa zweihundert Mal mehr als herkömmliche Mikrospiegel. Diese können – abhängig vom konkreten Design – bereits bei 100 Milliwatt an ihre Grenze gelangen. Mit 5 x 7 oder 6 x 8 Millimetern sind die neuen Modelle zudem sehr groß und können somit auch Laserstrahlen mit großem Durchmesser führen. Zum Vergleich: Herkömmliche Mikrospiegel haben eine Größe von 1 bis 3 Millimetern.

Wie haben die Forscher dies erreicht?

„Während die Siliziumplatte bei herkömmlichen Mikrospiegeln durch eine hundert Nanometer dicke Aluminiumschicht verspiegelt wird, haben wir hochreflektierende elektrische Schichten auf das Siliziumsubstrat aufgebracht“, erläutert Sandner. Der Spiegel reflektiert daher im sichtbaren Spektralbereich nicht nur 90 Prozent der Laserstrahlung wie übliche Bauelemente, sondern 99,9 Prozent. Es dringt viel weniger der hochenergetischen Strahlung in das Substrat ein. Das heißt, der Spiegel „merkt“ weniger von der Laserstrahlung und verträgt deutlich höhere Leistungen.

Die Herausforderung für die Forscher lag vor allem darin, diese Hochleistungsbeschichtung auf das, lediglich wenige zehn Mikrometer dünne, Silizium-Substrat aufzubringen, das in der Mikrosystemtechnik gang und gäbe ist. Denn um die gewünschten Reflektions-Eigenschaften zu erreichen, müssen die Forscher viele verschiedene Schichten aufbringen – insgesamt einige Mikrometer dick. In jeder dieser Schichten herrscht jedoch eine gewisse mechanische Spannung, zudem dehnen sich alle Schichten bei hoher Temperatur unterschiedlich stark aus. Das führt dazu, dass sich das Substrat durch die Beschichtung verformt, es wölbt sich. „Diese Wölbung verschlechtert die optische Qualität des Spiegels. Wir gleichen sie aus, indem wir auf der Rückseite des Substrates nochmal dieselben Schichten aufbringen“, verrät Sandner.

Demonstratoren des Handstücks sowie des Mikrospiegels gibt es bereits. Auf der Messe Laser World of Photonics vom 13. bis 16. Mai in München stellen die Forscher diese vor. In weiteren Entwicklungsschritten wollen sie nun die Schneidleistung optimieren.

Kontakt:

Fraunhofer-Institut für Photonische Mikrosysteme IPMS

D-01109 Dresden

www.ipms.fraunhofer.de

Kommentare werden geladen....

Diesen Artikel kommentieren

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

DER COMMUNITY-NEWSLETTER Newsletter abonnieren.
* Ich bin mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung einverstanden.
Spamschutz:
Bitte geben Sie das Ergebnis der Rechenaufgabe (Addition) ein.
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 39439230 / Szene)